If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+96t-50=0
a = -16; b = 96; c = -50;
Δ = b2-4ac
Δ = 962-4·(-16)·(-50)
Δ = 6016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6016}=\sqrt{64*94}=\sqrt{64}*\sqrt{94}=8\sqrt{94}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-8\sqrt{94}}{2*-16}=\frac{-96-8\sqrt{94}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+8\sqrt{94}}{2*-16}=\frac{-96+8\sqrt{94}}{-32} $
| (5x+2)/3=7 | | (5x+2)/3=7 | | n5=23.425n =223.4 | | 99.96=6.8x | | (s-3)(s+2)=5 | | 3y-19+2y+84=180 | | j3=2 | | 130=2x-5+6x+15 | | 3-4f=2+6(-6=@f | | t+24+2t+39=180 | | 3x+9=2x+5 | | x-1+3(x+2)=1+4(x+1) | | -2m+10=-3m | | 4x=12-7x=6 | | w+30+2w+57=180 | | -2-6t=-5t-9 | | (C-4)+(c-4)=6c-8 | | 13x−9x=3 | | 15/y=40/20 | | 4(x-7)=-3x-35 | | -4w=-w-9 | | a+16+a+48+44=180 | | 0.70x+0.05(18-x)=0.10(-56) | | s+44+45+12s=180 | | -10x+11=4x-17= | | 14=2(2x-11) | | 90=2×3.14×r | | 7x-3=3+2x | | 6(x+2)+x=2(x+3)+6 | | $14.99x$2.50=$13.49$1.00 | | 34+a+12+a-48=180 | | -7g=-9-8g |